
Eur. Phys. J. B 4, 441–445 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Magneto-phonon contribution into the Young’s modulus
of gadolinium

V.Yu. Bodriakov1, A.A. Povzner1,a, and S.A. Nikitin2

1 Ural State Technical University, UPI, Physics Department, 620002 Ekateringburg, Russia
2 M.V. Lomonosov Moscow State University, Physics Department, 119899 Moscow, Russia

Received: 9 April 1996 / Revised: 26 January 1998 / Accepted: 26 February 1998

Abstract. Theoretical and experimental investigation has been made of the magnetic contribution to the
Young’s modulus of rare earth ferromagnet gadolinium. Experimental study includes measurements of the
Young’s modulus as a function of temperature, magnetic field and magnetization of gadolinium. Theoretical
analysis is based on the account of phonon anharmonicity which gives rise to the dependence of Debye
temperature on magnetization. Spontaneous magnetic contribution to the Young’s modulus of Gd is found
to be proportional to the squared magnetization of the metal. The magnetic contribution is also induced
by magnetizing magnet due to the paraprocess.

PACS. 62.20.Dc Elasticity, elastic constants – 62.20.+x Mechanical properties of solids

Introduction

Magnetic phase transitions in Rare Earths Metals (REM)
and their alloys as well as an influence of the transitions
on various physical properties of REM has received the
valuable attention of many investigators [1–5].

One effective method to study magnetic phase transi-
tions is the exploration of elastic properties [3,5]. Measure-
ments of elastic characteristics allow reliably to fix such
weak anomalies as those in transitions between commen-
surate phases of magnetic structures of REM [4,5]. Sys-
tematic study of anomalous temperature dependencies of
elastic moduli of REM was started by Belov et al. [6,7].
They established a correlation between the elastic moduli
and magnetization of Ferromagnetic REM (FREM). They
considered also an effect of external magnetic field on the
elastic anomalies. The effect was found to be connected
with a change of magnet magnetization (∆E-effect). An
attempted theoretical description of elastic moduli anoma-
lies near Curie point TC was made in references [6,7] on
the basis of a second order theory of thermodynamic mag-
netic phase transitions.

However, the developed thermodynamical approach
[6,7] doesn’t consider phonon anharmonicity which should
take place not only in the paramagnetic region of FREM
but also below TC . The anharmonicity account is a princi-
pal point because the anharmonicity of atom oscillations
in a crystalline lattice gives rise to the temperature de-
pendence of the Young’s modulus in the paramagnetic re-
gion [8]. In addition the fact should be taken into account
that the term in the thermodynamic potential (ThDP)
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connected with phonon anharmonicity includes a charac-
teristic Debye temperature θ which is known to depend
on magnetization in a number of itinerant ferromagnets
[9–11]. The reason for such dependence can be seen from
the dependence of Debye temperature on bulk modulus
which in its turn depends on magnetization [10,11].

Till now, there has been no clarification of the deep
reasons responsible for the Young’s modulus’ dependence
on temperature in the paramagnetic region of ferromag-
nets. The technique isn’t developed yet for separation
of the magnetic contribution from the total value of the
Young’s modulus. This makes it impossible to consider ad-
equately the dependence of the magnetic contribution to
the modulus on magnetization, magnetic field and tem-
perature. For the reasons above further theoretical and
experimental investigations are necessary to clear up the
nature of elastic moduli anomalies in FREM.

In the present work an expression of for Young’s modu-
lus of rare earth ferromagnets was obtained on the basis of
theoretical consideration of a solid body as a quantum en-
semble of anharmonic oscillators [8], and magnetic phase
transition theory of second order [12]. The principle point
of the developed approach is dependence of Debye tem-
perature on magnetization, ferromagnetic REM gadolin-
ium was taken as a model for which elastic properties are
considered in the framework of the present theory.

Theory

Earlier [8] for a nonmagnetic isotropic solid body with an
account of thermal anharmonicity of atomic oscillations
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(the linear chain approach was used), an expression was
obtained for the temperature dependence of the Young’s
modulus Ep(T ), more exactly of its lattice part:

Ep(T ) = E0[1−KTD(T/θ)], (1)

where E0 = Ep(T = 0) is the low temperature limit of
the modulus; K = 9β∞(Lc1/c) is a coefficient directly
proportional to the ratio of anharmonic c1 and harmonic
c constants of restoring oscillator force and thus propor-
tional to the degree of anharmonicity in the atomic os-
cillations; β∞ is the high temperature asymptotic value
of the thermal expansion coefficient in the Debye model;
L is a dimensional parameter; θ is a characteristic model
parameter which has the sense of Debye temperature for
the oscillators chain. In a general case, parameter θ (for
brevity, hereinafter Debye temperature) can be different
from the real Debye temperature of matter. Tabulated De-
bye function D(x) depends only on the relative tempera-
ture x = T/θ:

D(x) = 3x3

∫ 1/x

0

y3dy

ey − 1
· (2)

Thus in the limits of the Debye model the opportunity ex-
ists to connect immediately two independently measured
sets of physical properties of solids: the elastic and ther-
modynamical ones [13].

“Magnetic” phonon anharmonicity gives rise to a
change of Debye temperature with magnetization. One
can state that the magnetically dependent part of Debye
temperature near Curie point TC can be expanded into a
row with even powers of magnetization I:

θ = θ0 + θ1(I) = θ0 +
1

2
αθI

2 +
1

4
βθI

4 + ... , (3)

where it is supposed θ0 = Const for a given magnet, and
the magnetic correction to Debye temperature is small:
θ1(I) � θ0. Thermodynamical reasons for equation (3)
are the same as in the thermodynamical theory of Lan-
dau [12] where ThDP near the Curie point is presented as
a row with even powers of magnetization. As mentioned
above the similar row for Debye temperature was obtained
earlier for a number of band ferromagnets [10,11] in the
limits of the Stoner model. We should note that critical
behavior of magnetic properties in the nearest vicinity of
the Curie point can lead to deviation from that presented
(3). The developing approach thus corresponds to a reg-
ular (non critical) behavior of magneto elastic properties.
According to experiment [9] Debye temperature of FREM
increases in the ferromagnetic region (aθ > 0) but slower
than the squared magnetization (βθ < 0).

Expanding Debye function D(x) into a row near θ0

by small parameter θ1 and taking into account only the
three first terms we’ll get the Young’s modulus of FREM
(x0 = T/θ0):

E(x) ≈ Ep(x0) +Em(x0, I)

≈ Ep(x0) +E(1)
m (x0, I

2) +E(2)
m (x0, I

4), (4)

where the lattice (phonon) part of the modulus is

Ep(x0) = E0[1−KTD(x0)]. (5)

Equation (5) coincides with the result of reference [8] for
non magnetic materials. E0 in this case is the Young’s
modulus extrapolated to T = 0 from the paramagnetic
region. The term dependent on magnetization Em(x0, I)
in (4) can be interpreted as a magnetic contribution to
the Young’s modulus’ total value. The first magnetic cor-
rection in the modulus

E(1)
m (x0, I

2) = E0KαθY0(x0)
1

2
I2, (6)

is proportional to the squared magnetization and vanishes
in the Curie point. The second magnetic correction in the
modulus is

E(2)
m (x0, I

4) = E0Kx0

{
β0Y0(x0)−

1

2

α2
θ

θ0
Y1(x0)

}
1

4
I4.

(7)

In equations (6, 7) notations are made:

Y0(x0) = x0

[
Cv(x0)

3R
−D(x0)

]
, (8)

Y1(x0) = x0

[
Cv(x0) + x0C

′
v(x0)

3R
− (D(x0) + x0D

′(x0))

]
,

(9)

where Cv(x0) is conventional Debye heat capacity at con-
stant volume; R is gaseous constant; prime “ ′ ” means
differentiation by argument.

Analysis of equations (6, 7) shows that two cases
should be differentiated. The first is a case of high temper-
ature ferromagnets (TC ≥ θ0) and the second one is the
case of low temperature ferromagnets (TC � θ0). Taking
into account that in considering FREM Debye tempera-
tures θ0 ∼ 100 ÷ 300 K, pure FREM and their alloys
can be regarded as high temperature ferromagnets. Exam-
ples of low temperature ferromagnets are diluted alloys of
FREM with non magnetic metals. Exploring the asymp-
totic behavior of functions Y0(x0) and Y1(x0) it is easy to
show that magneto elastic effects should be most clear in
high temperature FREM, which are the ones considered
in the present work. In this case we have near the Curie
point (x0 ≥ 1):

E(1)
m (x0, I

2) ≈ E0Kαθ

[
3

8
−

1

10x0

]
1

2
I2, (10)

E(2)
m (x0, I

4) ≈ E0K

{
βθ

[
3

8
−

1

10x0

]
−
α2
θ

2θ0

1

10x0

}
I4

4
·

(11)

Consequently, in the ferromagnetic region (T < TC) the
Young’s modulus of high temperature ferromagnets will
increase proportionally to the squared magnetization. The
slope of the linear part of Em(I2) dependence will increase

going deep into the ferromagnetic region (E
(1)
m > 0). At

high enough magnetization and low temperature, devia-
tion from the linear will take place: dependence of Em(I2)

will become more gently sloping (E
(2)
m < 0).
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Fig. 1. Temperature dependence of the Young’s modulus E(T )
of gadolinium single crystal along c axis. Solid line is computed
curve of temperature dependence of lattice contribution Ep(T )
into the Young’s modulus.

Table 1. Temperatures of magnetic phase transitions of
gadolinium single crystals and polycrystalline sample accord-
ing to the Young’s modulus measurements.

Transition Axis Heating Cooling

temperature

polycrystalline 293.2 293.9

TC , K c 292.1 292

a ∼ 300 ∼ 300

polycrystalline 227.4 228.4

TSR, K c 225.2 225.5

a ∼ 240 ∼ 240

Experiment

For comparison of theoretical results with experimental
data for FREM, measurements were carried out of tem-
perature and magnetic field dependencies of the Young’s
modulus of gadolinium single crystals taken as a model
object. Neutronographic investigations [14] showed that
Gd is a weakly anisotropic ferromagnet below Curie tem-
perature TC = 293 K, with magnetic moments aligned
along hexagonal axis c. Below the spin reorientation
point TSR ≈ 230 K, magnetic moments deviate from c
direction by a temperature dependent angle. The angle
is determined by the anisotropy constants of Gd [15]. So,
gadolinium is almost an ideal model ferromagnet for com-
parison between thermodynamic calculations and experi-
mental data.

Measurements of the Young’s modulus were made in
a sound frequency range (1–3 kHz) for single crystals
(c and a directions) and polycrystalline sample of gadolin-
ium by the method of bending vibrations of the sample –
a thin bar supported as a cantilever. Temperature region
covered is 4.2 ÷ 370 K, magnetic field reached 14 kOe.
The measurement technique was described earlier in detail
[5,13,16].

Temperature dependence of the Young’s modulus of
single crystal gadolinium in c axis direction is presented
in Figure 1. Magnetic phase transition paramagnetism –
ferromagnetism (PM-FM) at TC ≈ 292 K and spin reori-
entation transition (SR) at TSR ≈ 225 K are accompanied

Table 2. Parameters of computed temperature dependen-
cies of the lattice contributions into the Young’s modulus of
gadolinium.

Axis E0, GPa θ0, K Kθ0 Lc1/c

polycrystalline 68.4 184 0.076 4.76

c 70.5 339 0.082 2.07

Fig. 2. Temperature dependence of the Young’s modulus E(T )
of gadolinium single crystal along a axis.

by sharp minima in E(T ) dependence. The points of mag-
netic transitions were established by the minima of E(T )
curve and are given in Table 1. Established in this way,
temperatures TC and TSR are in good agreement with lit-
erature data [3,7,9,14]. The solid line in Figure 1 gives
computed temperature dependence of lattice contribution
to the modulus. The lattice contribution curve was extrap-
olated from the PM region of the metal to the low temper-
ature range. Parameters of the computed curve are given
in Table 2. The technique of experimental data processing
on the basis of equation (6) in the paramagnetic region
was discussed earlier in detail [5,13]. Weak temperature
hysteresis in E(T ) dependence exists in the SR transition
range. The hysteresis bears witness to metastable, non
equilibrium behavior of magnetic structure of Gd at these
temperatures.

Temperature dependence of the Young’s modulus of
Gd single crystal along axis a is shown in Figure 2. As well
as in the c axis measurements, magnetic phase transition
PM-FM is accompanied by a sharp minimum in E(T ) de-
pendence. Contrary to the c axis case, SR transition along
a direction is expressed weakly. Magnetic phase transition
temperatures found in a axis study exceed the ones for
c axis, and are less reliable (Tab. 1). Dependence E(T )
in a direction demonstrates visible temperature hysteresis
in all temperature regions studied. Temperature depen-
dence of the Young’s modulus of polycrystalline gadolin-
ium is much smoothen in comparison with single crystals.
In general, the elastic modulus of polycrystalline sample
behaves in a similar manner in the c direction. By the
reasons above, only c axis data are analyzed below for
gadolinium.

Temperature dependence of spontaneous (in absence
of external magnetic field) magnetic contribution into the
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Fig. 3. Temperature dependence of spontaneous magnetic con-
tribution into the Young’s modulus Em(T ) of gadolinium single
crystal along c axis. Solid line is theoretical curve of the Em(T )
dependence near Curie point.

total value of the Young’s modulus Em(T ) of gadolinium
c axis single crystal are given in Figure 3. The magnetic
contribution was calculated as a difference between experi-
mental values E(T ) and computed lattice part Ep(T ). The
magnetic contribution is positive overall the magnetically
ordered temperature range except in the narrow vicinities
of phase transition points. The magnetic contribution dis-
appears not immediately in the Curie point but visibly far
into the paramagnetic region (about 310 K). This bears
witness to some remaining short range magnetic order-
ing above TC . This fact should be taken into account if
exact calculations are necessary. Sharp minima in Em(T )
dependence at transition points could be associated with
critical magneto elastic effects. However, the question de-
mands separate consideration.

Results of the∆E-effect measurements of gadolinium c
axis sample (magnetic field was parallel to the direction in
study) shows that except in the vicinities of magnetic tran-
sition points, the Young’s modulus increases with tem-
perature drop (positive ∆E-effect). The increase rate in-
creases with ascending magnetic field. The Curie point
minima in E(T,H) dependencies move to higher temper-
atures, and decrease in value with the field, so that at
H > 3 kOe the PM-FM transition is accompanied by
only bending of the E(T,H) curves. On the contrary,
spin-reorientation minima of E(T,H) dependencies move
with the field to lower temperatures and transform into
plateaus at H > 1.5 kOe. Measured magnetization curves
of gadolinium along axis c are in good agreement with
literature data [17] and don’t need consideration.

Discussion

Dependence of the spontaneous magnetic contribution to
the Young’s modulus of gadolinium along axis c is shown
as a function of squared spontaneous magnetization σ2

s

in Figure 4. It should be mentioned that specific mag-
netization σ is connected with a total magnetization I

Fig. 4. Dependence of spontaneous magnetic contribution in
to the Young’s modulus Em of gadolinium single crystal along
c axis on the squared specific magnetization σ2

s (1 emu =
1 Gs cm3g−1). Solid line is computed straight line Em(σ2

s).

Fig. 5. Dependencies of the normalized magnetic contribu-
tion to the Young’s modulus Em/(E0Kθ0) of gadolinium sin-
gle crystal along c axis on the squared specific magnetization
σ2 (1 emu = 1 Gs cm3 g−1) at fixed temperatures. Curve
1:T = 300 K; 2:297; 3:289; 4:284; 5:278; 6:271; 7:261; 8:251;
9:233.

by the relation I = σρ where ρ is density. According to
theoretical consideration, the dependence Em(σ2

s) is lin-
ear over almost all the ferromagnetic temperature region.
This means weak temperature dependence of coefficients
αθ, βθ in a virgin state of the metal (without field). Devi-
ations from the linear law in the regions of small and big
magnetization are associated with critical behavior of the
elastic modulus near TC ' TSR, accordingly. Computed
dependence of the spontaneous magnetic contribution to
the Young’s modulus of Gd along axis c is also shown in
Figure 3 near PM-FM transition point (solid line).

Dependencies of the normalized magnetic contribu-
tion to the Young’s modulus Em/(E0Kθ0) of Gd along
axis c on squared magnetization σ2 at fixed temperatures
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Fig. 6. Temperature dependence of thermodynamic coefficient
αθ. Solid line is computed straight line αθ(T ).

are given in Figure 5. The modulus magnetic con-
tribution was computed from the ∆E-effect measure-
ments. In agreement with the theory, developed isotherms
Em(σ2)/(E0Kθ0) are linear over initial parts and their
slopes increase with temperature drop. With increasing
magnetization the isotherms become more gently slop-
ing, so that at high enough magnetization one can see
the isotherms Em/(E0Kθ0) move to saturation.

Coefficient αθ can be easily found from the dependen-
cies of Figure 5. As follows from equations (6, 10) slope of
isotherms Em(σ2)/(E0Kθ0) over the initial parts are pro-
portional to the value αθ. Dependence αθ(T ) is pictured
in Figure 6. The experimental points lie satisfactorily on
a straight line. This fact permits the suggestion of the fol-
lowing temperature dependence for the thermodynamical
coefficients in equation (3) at T < TC :

αθ = a0 + aθ(TC−T ), βθ = Const. (12)

One can show that (12) is in consistent with conventional
Landau second order magnetic phase transitions theory
[12]. The fact that coefficient a0 isn’t equal to zero can be
interpreted as evidence of remaining short range magnetic
order somewhat above the Curie point. Values of the co-
efficients were found to be aθ = 1.18× 10−3 K emu−2 and
a0 = 6.92×10−5 emu−2. Coefficient βθ equals zero within
the limits of errors.

Conclusion

So the present theoretical investigation has established
the spontaneous magnetic contribution to the Young’s
modulus of ferromagnetic REM to be proportional to the
squared spontaneous magnetization. In addition, the mag-
netic contribution is induced by magnetizing because of a

para process. Temperature dependence of the elastic mod-
ulus is determined by the phonon anharmonicity. The last
one in the ferromagnetic area results in the dependence of
the Debye temperature on magnetization. Reciprocal in-
fluence of phonon anharmonicity on temperature depen-
dence of magnetization is also possible. This influence,
as well as exploration of interrelation between magneto
elasticity and other physical properties of matter such as
heat capacity, thermal expansion, etc., requires separate
consideration. One sees that the magnetostriction effects
studied here which form the elastic modulus anomalies,
will also take place in more complicated magnetic struc-
tures of heavy REM such as antiferromagnetic, helicoidal,
spin-slip ones.
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